
System Composer™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ Release Notes
© COPYRIGHT 2019–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2022b

Author parameters on components that flow down through Simulink and
architectures . 1-2

Authoring asynchronous client-server interfaces in software architecture
models . 1-3

Enable functions authoring in AUTOSAR Blockset architectures 1-4

Interface compatibility edit-time checks . 1-4

Edit, view, and manage allocations on architecture models 1-5

Use stereotypes on requirements and links . 1-5

Simulate Sequence Diagrams: Use sequence diagrams to visualize System
Composer architecture simulation . 1-6

Describe elements of a sequence diagram using annotations 1-6

Export view diagrams . 1-7

Edit layout of architecture views interactively . 1-7

Allow merging of message lines in architecture models 1-7

Report Generator: Generate reports for a System Composer architecture
model . 1-8

R2022a

Instance-specific parameters for System Composer components 2-2

Subsystem Reference Behaviors: Add reusable Simulink and Simscape
behaviors to components . 2-3

Compare two versions of an architecture model using Comparison Tool
. 2-3

iii

Contents

Interface Adapter Bus Creation Mode: Use Adapter blocks to author
interfaces for outgoing connections . 2-4

Synchronize sequence diagrams and architecture models 2-5

Client-server interfaces: Model service-oriented architectures in software
architecture models . 2-5

Author and edit functions in software architectures 2-6

Combine multiple signal or message lines in software architectures into
single line using the Adapter block . 2-7

Function Stereotypes: Apply stereotypes to functions of software
architectures . 2-9

Software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulation
support for reference components . 2-10

Import and export functions of software architectures 2-11

Author Model Advisor checks that run at edit-time 2-11

R2021b

Physical Interfaces with Simscape: Create physical interfaces, ports, and
connections on components . 3-2

Simulink Subsystem Component: Add Simulink and Simscape behaviors
to components . 3-2

Create software architectures from existing components 3-3

Functions Editor: Visualize component functions in software
architectures . 3-4

Value Types as Interfaces: Describe atomic pieces of data 3-5

Owned Interfaces: Define interfaces local to ports 3-6

Architecture Views: Add port filters . 3-6

Architecture Hierarchy: Display the hierarchy of unique component types
. 3-7

Class Diagrams: Display software architecture model as a class diagram
. 3-8

Import and export software architectures . 3-9

iv Contents

Test harnesses for System Composer components 3-9

R2021a

Sequence Diagrams: Describe system behavior as a sequence of
interactions between components . 4-2

State Charts: Describe component behavior using Stateflow charts to
represent modes of operation . 4-2

Software Architecture: Simulate and deploy software functions from
System Composer . 4-3

Updates to the Architecture Views Gallery and Programmatic Interfaces
. 4-3

Performance and Scalability Improvements . 4-5

Interface Editor enhancements . 4-5

R2020b

Model to Model Allocations: Establish traceable and directed
relationships between architectural elements in source and target
models . 5-2

Enhanced workflows with Architecture Views . 5-2

Hierarchy Views: Display component hierarchy as a tree diagram 5-3

Referenced Data Dictionaries: Organize interfaces in a hierarchy of data
dictionaries . 5-3

Interface Editor enhancements . 5-3

Support for component behavior using Simulink models with message
input and output . 5-4

Stereotype-Based Styling: Style connectors based on stereotypes and use
custom icons for component stereotypes . 5-5

Support for protected models as component behaviors 5-6

Import and export requirement links along with the architecture models
. 5-6

v

R2020a

Stereotype-Based Styling: Associate a color with component stereotypes
. 6-2

Interface Stereotypes: Apply stereotypes for custom metadata on
interface objects . 6-2

Quick Insert Stereotypes: Insert stereotyped components directly by
typing on the canvas . 6-3

Model Templates for Referenced Models: Select from preconfigured
templates when creating new referenced architecture or behavior
models . 6-4

Requirements on Component Ports: Link requirements to component
ports . 6-4

Partial Architecture Model Load: Improved loading for large models . . . 6-5

R2019b

Architecture Views . 7-2

Interface Adapter . 7-2

Import and Export Architecture Models . 7-2

AUTOSAR Software Architecture . 7-2

R2019a

Introducing System Composer . 8-2

Composition Editor . 8-2

Spotlight Views . 8-2

Linking Simulink Behavior Models . 8-2

Linking and Managing Requirements . 8-2

Stereotypes and Profiles . 8-2

vi Contents

Architecture Model Analysis . 8-3

vii

R2022b

Version: 2.3

New Features

Bug Fixes

Compatibility Considerations

1

Author parameters on components that flow down through Simulink
and architectures
Starting in R2022b, top-down parameter authoring is supported for System Composer architectures
and AUTOSAR Blockset software architectures. Use the Property Inspector to view and edit
parameters.

Use the Parameter Editor to author, edit, and manage parameters. Expose parameters to higher
levels of the architectural hierarchy by promoting them.

R2022b

1-2

Parameters are synchronized with Simulink® for simulation and code generation.

For more information, see “Author Parameters in System Composer Using Parameter Editor”.

Compatibility Considerations
This table shows the new and removed programmatic interfaces in R2022b.

New Removed Rationale
systemcomposer.arch.Para
meter

getParameterDefinition
and
systemcomposer.parameter
.ParameterDefinition

The new object
systemcomposer.arch.Para
meter has a Type property that
is a
systemcomposer.ValueType
object with the parameter
definition. The Parameters
property under the
systemcomposer.arch.Arch
itecture object contains the
systemcomposer.arch.Para
meter object with the default
parameter value in its Value
property.

Authoring asynchronous client-server interfaces in software
architecture models
In R2022b, you can author asynchronous client-server interfaces in software architecture models.

To specify a function element as asynchronous:

• In the Interface Editor, in the new Asynchronous column, select the corresponding check box.

• Use the setAsynchronous function to make a
systemcomposer.interface.FunctionElement object asynchronous.

Assign the service interface to client-server ports on software components. Create Simulink behaviors
for these software components that include asynchronous Function Caller and Simulink Function
blocks. A Message Triggered Subsystem block that connects to the output port of the Function Caller
block acts as a callback for the function.

1-3

You can schedule the priority of asynchronous services using the Functions Editor. For more
information, see “Author Service Interfaces for Client-Server Communication”.

Enable functions authoring in AUTOSAR Blockset architectures
In R2022b, functions authoring is enabled in AUTOSAR Blockset software architectures. The System
Composer Functions Editor is now available from the toolstrip in the Modeling menu.

The Functions Editor updates the diagram and populates it with the functions (runnables) from the
reference components of the architecture model.

Compatibility Considerations
If an AUTOSAR architecture model created in a previous release is loaded in R2022b, and if it
contains reference components, use the Schedule Editor to inspect and verify the partitions which
correspond to functions. Otherwise, the partitions might not match ones from a previous release. Use
the Functions Editor to specify the execution order of the functions.

Interface compatibility edit-time checks
In R2022b, if you have a Simulink Check™ license, you can enable the interface compatibility edit-
time checks.

For incompatible interfaces on different ports on the same connection, such as different data
interfaces, you can fix the problem by adding an Adapter block to define interface mappings.

R2022b

1-4

For more information, see “Enable Interface Compatibility Edit-Time Check”.

Edit, view, and manage allocations on architecture models
Starting in R2022b, you can manipulate allocations from within the model canvas.

• Create new allocations for components, ports, and connectors in architecture model editors by
using the context menu.

• Select or create new allocation sets and scenarios on the Select Active Scenario dialog box.
• Inspect allocations from the composition editor using badges on allocated elements.

• Follow the allocation thread by navigating from one end to the other end of the allocation link.

For more information, see “Create and Manage Allocations Interactively”.

Use stereotypes on requirements and links
You can now apply stereotypes to requirements in a requirement set and to links in a link set in
System Composer. A Requirements Toolbox™ license is required to author requirements. For more
information, see “Customize Requirements and Links by Using Stereotypes” (Requirements Toolbox).

1-5

Simulate Sequence Diagrams: Use sequence diagrams to visualize
System Composer architecture simulation
Starting in R2022b, from a sequence diagram in System Composer, you can simulate the parent
architecture model and then verify that the model simulation results match the interactions described
by the sequence diagram. Simulating a sequence diagram is not currently supported for software
architectures.

To simulate sequence diagrams in the Architecture Views Gallery, on the Sequence Diagram tab,
use the Simulation section of the toolstrip.

Alternatively, set the model configuration parameter ObservedSequenceDiagrams, then use the
sim function.

For more information, see “Simulate Sequence Diagrams for Traffic Light Example”.

Describe elements of a sequence diagram using annotations
You can add plain-text annotations to a sequence diagram to describe diagram elements, such as
lifelines, messages, and fragments.

For more information, see “Use Annotations to Describe Elements of Sequence Diagram”.

R2022b

1-6

Export view diagrams
Starting in R2022b, you can print view diagrams in the Architecture Views Gallery using the
Export button. Export the currently selected diagram as a PDF. View diagrams can be saved as PDF
files. Sequence diagrams can be saved as PDF files or image files.

Edit layout of architecture views interactively
In the Architecture Views Gallery, you can now edit component diagram views interactively.

For more information, see “Edit Views Interactively”.

Allow merging of message lines in architecture models
You can now merge message lines in System Composer architecture models. Configure an Adapter
block applying the interface conversion Merge.

Merge multiple messages produced by Simulink behavior components into a single destination using
an Adapter block.

For more information, see “Merge Message Lines for Architectures Using Adapter Block”.

1-7

Report Generator: Generate reports for a System Composer
architecture model
Using Simulink Report Generator™ classes, you can now generate custom reports for System
Composer architectural data, and AUTOSAR Blockset software architectures. Customize your report
using a set of report generator classes.

For more information, see “Import and Export Architecture Models”.

R2022b

1-8

R2022a

Version: 2.2

New Features

Bug Fixes

2

Instance-specific parameters for System Composer components
In R2022a, System Composer exposes instance-specific parameter values for reusable referenced
models. You can now configure parameters defined by model arguments to use a different value for
each instance of a component that references the same Simulink model or System Composer
architecture model.

Instance-specific parameter values are now visible on the component level. View and edit these
values using the Property Inspector.

Each parameter value can be specified independently for each component that references the model.

For more information, see Access Model Arguments as Parameters on Reference Components.

R2022a

2-2

https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/implement-components-in-simulink.html#mw_5bda26c0-148a-4d47-910f-2ebd48831e4b

Subsystem Reference Behaviors: Add reusable Simulink and Simscape
behaviors to components
Create a subsystem reference by linking a Simulink subsystem file to a component. The subsystem
reference is saved in a separate file from the parent System Composer architecture model.

A subsystem reference component can be implemented as a reference to a separate Simulink
subsystem file and reused multiple times in the architecture model. A subsystem reference
component is different from a Simulink subsystem component that is part of the parent System
Composer architecture model.

A common use case for subsystem reference is to author Simscape™ behaviors with physical ports,
interfaces, connections, and blocks.

For more information, see Create Reusable Simulink Subsystem Behavior Using Subsystem Reference
Component.

To convert a subsystem component into a subsystem reference, see Convert Simulink Subsystem
Component to Subsystem Reference Component.

Compare two versions of an architecture model using Comparison Tool
In R2022a, you can compare two architecture models and see differences between architectural data
using the Comparison Tool.

This example comparison shows the differences between two architecture models.

2-3

https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/implement-components-in-simulink.html#mw_030b1e78-2bd3-40c9-8bcd-114479356c00
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/implement-components-in-simulink.html#mw_030b1e78-2bd3-40c9-8bcd-114479356c00
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/implement-components-in-simulink.html#mw_1e5f0c2b-2d6d-4eaa-8515-7a523a2e5d0f
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/implement-components-in-simulink.html#mw_1e5f0c2b-2d6d-4eaa-8515-7a523a2e5d0f
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/comparisontool.html

The System Composer Comparison Tool can also be used with software architectures in System
Composer and AUTOSAR Blockset.

For more information, see Compare Model Differences Using System Composer Comparison Tool.

Interface Adapter Bus Creation Mode: Use Adapter blocks to author
interfaces for outgoing connections
When input ports for an Adapter block are typed by interfaces from incoming connections and no
interfaces are defined on the output ports, you can now use these interface elements to author owned

R2022a

2-4

https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/model-differencing.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/adapter.html

interfaces for outgoing connections. Instead of pre-defining interface structures, you can create the
bus structure as you work. Double-click the Adapter block to open the Interface Adapter dialog in bus
creation mode.

For more information, see Interface Adapter.

Synchronize sequence diagrams and architecture models
When an architecture model and sequence diagram are out of sync, you can now reconcile the
differences and resolve warnings. Sequence diagrams can be edited from the Architecture Views
Gallery. Click Check Consistency to check whether the sequence diagram is in sync. You can
synchronize sequence diagrams and architecture models using these three actions:

• Choose another Architecture Element from the list so that the selected lifeline points to the
correct component or selected message end points to the correct port.

• Push changes from the sequence diagram to the architecture model using Create in
Architecture.

• Pull changes from the architecture model to the sequence diagram using Repair.

For more information, see Synchronize Sequence Diagrams and Architecture Models.

Client-server interfaces: Model service-oriented architectures in
software architecture models
You can now model client-server connections between software components in software architectures
in System Composer. Client ports and server ports are new types of ports that you can add to
software components. Service interfaces are a new type of interface you can associate with these
ports.

2-5

https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/adapter.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/interface-adapter.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/architectureviewsgallery.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/architectureviewsgallery.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/synchronize-sequence-diagrams.html

A service interface defines the functional interface between client and server components. Each
service interface consists of one or more function elements. Use the Interface Editor to author and
edit service interfaces. Once you have defined a service interface, you can assign it to client and
server ports using the Property Inspector. You can also use the Property Inspector to assign
stereotypes to service interfaces.

To implement the desired function behavior for client and server components using referenced
Simulink models, invoke the Create Simulink behavior command or the
createSimulinkBehavior function for a component with a client or server port. You can also link
existing Simulink models to components in System Composer to implement server and client behavior
as long as the models are export-function models.

Once the behavior models are complete, you can simulate the composition model in System
Composer. You can customize the execution order of client calls and server responses in a software
architecture model using the Schedule Editor or the Functions Editor. After simulation, you can use
the Sequence Viewer tool to visualize calls and responses.

For more information, see Author Service Interfaces for Client-Server Communication.

Author and edit functions in software architectures
In R2022a, you can author and edit functions for your software architecture components using the
Functions Editor or programmatic interfaces. You can then implement authored functions by
creating Simulink behaviors.

• Use the Functions Editor to author functions.

• Add and delete functions.
• Change the execution order of the functions.
• Change the name of a function.
• Change the period of a function.

R2022a

2-6

https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/interfaceeditor.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/functionseditor.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/author-service-interfaces-for-client-server-communication.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/functionseditor.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/functionseditor.html

• You can also author functions for your components using the programmatic interface
addFunction.

After you create your functions, you can implement and create behaviors for your functions using the
toolstrip or a programmatic interface.

• To implement functions using the toolstrip:

1 On the Modeling tab, select Component, then select Create Simulink Behavior.
2 Select the Type of the Simulink behavior as rate-based or export-function.

Alternatively, you can right-click the component and select Create Simulink Behavior.
• You can also use the createSimulinkBehavior function to implement functions

programmatically. This function creates a new Simulink rate-based or export-function behavior
and links the software component to the new model.

For more information, see Author and Extend Functions for Software Architectures.

Combine multiple signal or message lines in software architectures
into single line using the Adapter block
In R2022a, the Adapter block is enhanced to merge multiple signal or message lines into a single line.

In this example, the Adapter block is configured to merge two signals from two different components.

2-7

https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/systemcomposer.arch.architecture.addfunction.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/systemcomposer.arch.component.createsimulinkbehavior.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/author-edit-and-visualize-functions-in-software-architectures.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/adapter.html

To merge signal or message lines, you can add a Merge block from the toolstrip. The Merge block is
an Adapter block preconfigured for merging.

You can also merge message or signal lines by setting the Apply Interface conversion parameter of
the Adapter block to Merge.

R2022a

2-8

For more information, see Merge Message Lines Using Adapter Block.

Function Stereotypes: Apply stereotypes to functions of software
architectures
In R2022a, you can add stereotypes containing custom properties to software architecture functions.

First, define your function stereotypes using the Profile Editor.

Use the Functions Editor to select functions in your software component, apply stereotypes, view
the stereotypes applied to your functions, and edit the stereotype property values.

In this example, you can specify the value for the FunctionValue property of the stereotype called
FunctionStereotype.

2-9

https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/merge-message-lines-in-software-architectures-using-an-adapter-block.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/profileeditor.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/functionseditor.html

For more information, see Apply Stereotypes to Functions of Software Architectures.

Software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulation
support for reference components
In R2022a, for Reference Component blocks, you can change the block Simulation mode to
Software-in-the-loop (SIL), or Processor-in-the-loop (PIL). Right-click the reference
component and select Block Parameters (Model Reference) to access the block parameters.

R2022a

2-10

https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/author-edit-and-visualize-functions-in-software-architectures.html#mw_4c8851f5-a7fe-4cf0-b293-d3e05d5693a7

Import and export functions of software architectures
In R2022a, you can import and export functions of your software architectures.

• Use systemcomposer.exportModel to output a functions field that contains a table with
function information.

• Use systemcomposer.importModel to import a model with functions where the import
structure can have a functions field that contains function information.

For more information, see Import and Export Functions of Software Architectures.

Author Model Advisor checks that run at edit-time
Starting in R2022a, if you have a Simulink Check license, you can author Model Advisor checks that
run on architecture models. Because edit-time checks appear in the model canvas while you edit your
model, they can help you catch issues earlier in the model design process. You can author edit-time
checks that highlight issues on blocks and signals. To create a custom edit-time check, create a
MATLAB class that derives from the ModelAdvisor.EdittimeCheck (Simulink Check) class. For an
example, see Define Custom Edit-Time Checks that Fix Issues in Architecture Models (Simulink
Check).

2-11

https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/systemcomposer.exportmodel.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ref/systemcomposer.importmodel.html
https://www.mathworks.com/help/releases/R2022a/systemcomposer/ug/author-edit-and-visualize-functions-in-software-architectures.html#mw_3596e41c-2096-49c5-82d8-68ffa49d8138
https://www.mathworks.com/help/releases/R2022a/slcheck/ref/modeladvisor.edittimecheck-class.html
https://www.mathworks.com/help/releases/R2022a/slcheck/ug/define-custom-edit-time-checks-that-fix-issues-in-architecture-models.html

R2021b

Version: 2.1

New Features

Bug Fixes

Compatibility Considerations

3

Physical Interfaces with Simscape: Create physical interfaces, ports,
and connections on components
In R2021b, you can create physical interfaces, ports, and connections on components in architecture
models and implement physical behaviors using Simscape. To implement physical behaviors, add
Simulink subsystem behavior to a component.

Physical port interfaces can be aggregated from multiple Simscape domains.

For more information, see Describe Component Behavior Using Simscape.

Simulink Subsystem Component: Add Simulink and Simscape
behaviors to components
Create a Simulink subsystem that is part of the parent System Composer architecture model by
adding Simulink subsystem behavior to a component.

In previous releases, Simulink behaviors were implemented as references to separate Simulink model
files. In R2021b, Simulink behaviors can also be described within the same model as the architecture
through subsystem components.

R2021b

3-2

https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/describe-component-behavior-using-simscape.html

Subsystem components are required to author Simscape component behaviors with physical ports,
connections, and blocks. For example, this amplifier physical system uses electrical domain blocks
inside a subsystem component in a System Composer architecture model.

For more information, see Create Simulink Behavior Using Simulink Subsystem.

Create software architectures from existing components
In R2021b, you can create a software architecture model from an existing component in System
Composer.

3-3

https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/implement-components-in-simulink.html#mw_90f0d311-59ca-4a70-b521-b257b508d9f8

To create a software architecture model from a component, you can use these two methods:

1 To create a software architecture model from the toolstrip:

a Right-click the component and select Create Software Architecture Model.
b Select the component, and, on the toolstrip, click Create Software Architecture Model.

2 To create a software architecture programmatically, use the createArchitectureModel
function.

For more information, see Create Software Architecture from Architecture Model Component.

Functions Editor: Visualize component functions in software
architectures
Use the Functions Editor to edit the simulation execution order and sample time of functions with
inherited sample time (-1) in your software architecture.

Open the Functions Editor from the toolstrip.

Use the Functions Editor to:

• Update your software architecture model to automatically populate functions from any reference
components.

• Arrange the execution order of the functions. Use the up and down arrows or drag and drop
functions to sort them in the desired order.

• Edit sample times of the functions. Specify their period in the table.
• Order functions based on their data dependencies. Select Order functions by dependency

check box.

R2021b

3-4

https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.arch.component.createarchitecturemodel.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/author-software-architectures.html#mw_84cf01f1-eb81-4511-8fbe-d81cc286af9d

To get functions programmatically, use the new systemcomposer.arch.Function object.

For more information, see Simulate and Deploy Software Architectures.

Value Types as Interfaces: Describe atomic pieces of data
In R2021b, you can apply a value type to a port to use it as a port interface. A value type is a
description of an atomic piece of data. Data interfaces in System Composer are composite and
structured with elements.

Using a value type as an interface means the interface has a top-level type, dimension, unit,
complexity, minimum, maximum, and description.

You can also assign the type of data elements in data interfaces to value types and reuse the value
types any number of times.

For more information, see Create Value Types as Interfaces.

For the new value type object, see systemcomposer.ValueType.

3-5

https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.arch.function.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/simulate-software_architectures.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/define-interfaces-1.html#mw_2e44d68f-22ff-4dee-ad86-e74187680331
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.valuetype.html

Compatibility Considerations
This table shows the new and removed programmatic interfaces in this release.

New Removed Rationale
systemcomposer.interface
.DataInterface

systemcomposer.interface
.SignalInterface

The class for a data interface
has been renamed.

systemcomposer.interface
.DataElement

systemcomposer.interface
.SignalElement

The class for a data element has
been renamed.

Owned Interfaces: Define interfaces local to ports
In R2021b, you can author locally defined interfaces that do not need to be reused, called owned
interfaces. Owned interfaces are local to specific ports and are not shared in a data dictionary or the
model dictionary. Owned interfaces represent a value type or data interface with attributes that
describe a port.

For more information, see Define Owned Interfaces Local to Ports.

Compatibility Considerations
This table shows the new and removed programmatic interfaces in this release.

New Removed Rationale
createInterface createAnonymousInterface To better support owned

interfaces, the term
"anonymous" is being
removed.

Architecture Views: Add port filters
In R2021b, you can filter ports in addition to components in architecture views using names,
stereotypes, and property values.

The View Configurations panel now has an option to filter by a component filter or a port filter. You
can also select the Auto Apply check box to automatically apply filters.

R2021b

3-6

https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.interface.datainterface.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.interface.datainterface.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.interface.signalinterface.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.interface.signalinterface.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.interface.dataelement.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.interface.dataelement.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.interface.signalelement.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.interface.signalelement.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/assign-interfaces-to-ports.html#mw_f1afc61f-7e09-4f2b-b6b4-ea6ba16229c3
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.arch.componentport.createinterface.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.arch.componentport.createanonymousinterface.html

An architecture view is created using the additional query in the Port Filter box. The view is filtered
to show all components with ports with "Location" in the name.

For more information, see Create Architecture Views Interactively.

Architecture Hierarchy: Display the hierarchy of unique component
types
You can now visualize the hierarchy of architecture types of architecture models. Architecture
hierarchy diagrams display unique component architecture types and their relationships using
composition connections. In an architecture hierarchy view, each referenced model is represented
only once.

3-7

https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/creating-architecture-model-views.html

For more information, see Display Component Hierarchy and Architecture Hierarchy Using Views.

Class Diagrams: Display software architecture model as a class
diagram
You can now visualize a software architecture model as a class diagram. A class diagram is a
graphical representation of a static structural model that displays unique architecture types of the
software components optionally with software methods and properties. Class diagrams capture one
instance of each referenced model and show relationships between them.

R2021b

3-8

https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/display-component-hierarchy-and-architecture-hierarchy-using-views.html

For more information, see Class Diagram View of Software Architectures.

Import and export software architectures
In R2021b, you can import and export software architectures.

• To import a software architecture to your model, use the systemcomposer.importModel
function.

archModel = systemcomposer.importModel(modelName,importStruct)

If the domain field of importStruct is "Software", the importModel function creates a new
software architecture based on the structure of the MATLAB® tables.

• To export an existing software architecture, use the systemcomposer.exportModel function.

exportedSet = systemcomposer.exportModel(modelName)

The exportModel function returns a MATLAB structure with the following fields:

• components, ports, connections, portInterfaces, and requirementLinks as MATLAB
tables that capture components, ports, connections, port interfaces, and requirement links of
the exported architecture.

• domain with value "Software" to indicate that the exported architecture is a software
architecture.

Test harnesses for System Composer components
In R2021b, you can create test harnesses for System Composer components in addition to Reference
Component blocks.

A test harness enables you to isolate individual blocks for functional testing, behavior testing, and
implementation-independent interface testing for requirements defined in System Composer using
Simulink Requirements™. You can continue to manage your system interfaces inside the test harness
and maintain synchronization with the System Composer model.

3-9

https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/class-diagram-view-of-software-architectures.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.importmodel.html
https://www.mathworks.com/help/releases/R2021b/systemcomposer/ref/systemcomposer.exportmodel.html

A Simulink Test™ license is required to create a test harness for a System Composer component to
validate simulation results and verify design.

For more information, see Verify and Validate Requirements Using Test Harnesses on Components.

R2021b

3-10

https://www.mathworks.com/help/releases/R2021b/systemcomposer/ug/trace-requirements.html#mw_6b38cffe-1b47-4a50-bc36-30938b188470

R2021a

Version: 2.0

New Features

Bug Fixes

Compatibility Considerations

4

Sequence Diagrams: Describe system behavior as a sequence of
interactions between components
You can use sequence diagrams in System Composer to describe the expected system behavior as a
sequence of interactions between components of a system. You can create multiple sequence
diagrams to represent different operational scenarios of the system. New lifelines or interactions
authored on the sequence diagram are automatically reflected as new components or connections in
the architecture model.

Sequence diagrams are available in the Architecture Views Gallery and support these features:

• Add lifelines to represent components and show what the component does in terms of events
received and events sent out.

• Create child lifelines for child components.
• Add messages between lifelines that correspond to a connection between ports to show how

components interact. These messages can have triggers and constraints attached to them.
• Create messages from root architecture ports to any lifeline component.
• Use the co-creation workflow. The software generates components and connections as you author

new lifelines and messages in the sequence diagram.
• Make a marquee selection of messages and create a fragment. Click the Add Operand button to

add operands for more complicated semantics like if-else branching or looping.
• When a mismatch occurs from the architecture model the sequence diagram references, click the

Check Consistency button to highlight lifelines pointing to missing components for manual
reconciliation.

For more information, see Define Sequence Diagrams.

State Charts: Describe component behavior using Stateflow charts to
represent modes of operation
In R2021a, you can add Stateflow® chart behavior to a component in a System Composer architecture
model.

• Add Stateflow chart behavior to a component.

R2021a

4-2

https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/define-sequence-diagrams.html

• The new Stateflow chart behavior for a component is embedded within the same .slx file as the
parent architecture model, reducing the need for multiple model files.

For more information, see Add Stateflow Chart Behavior to Architecture Component.

Software Architecture: Simulate and deploy software functions from
System Composer
Use System Composer to author software architectures composed of software components, ports, and
interfaces. Design your software architecture model, define the execution order of functions from
your components, simulate your design at the architecture level, and generate production code. For
more information, see Author Software Architectures.

For an example that shows how to author the software architecture of a throttle position control
system in System Composer, see Modeling the Software Architecture of a Throttle Position Control
System.

Updates to the Architecture Views Gallery and Programmatic
Interfaces
The Architecture Views Gallery updates include UI improvements and new programmatic interfaces
for views.

• Use View Properties on the right of the views gallery when a view is selected. Properties include
Name, Color, and Description.

4-3

https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/add-state-chart-behavior-with-stateflow.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/author-software-architectures.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/modeling-software-architecture-of-a-throtlle-position-control-system.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/modeling-software-architecture-of-a-throtlle-position-control-system.html

• Create and define the Filter and Grouping for views in View Configurations at the bottom of
the views gallery.

• Group By multiple property values.

• New views programmatic interfaces are available to streamline creating views programmatically.
You can now add elements to the view independent of ordering and to remove elements cleanly.
Existing programmatic interfaces are removed.

For more information, see Create Architecture Views Interactively and Create Architectural Views
Programmatically.

Compatibility Considerations
This table shows the new and removed programmatic interfaces in this release.

R2021a

4-4

https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/creating-architecture-model-views.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/creating-architectural-views-programmatically.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/creating-architectural-views-programmatically.html

New Removed Rationale
createView createViewArchitecture The new object

systemcomposer.view.View
is created with a name and
optionally with a query,
grouping criteria, and the
option whether to include
references. The Root property
of a View object is a
systemcomposer.view.Elem
entGroup object.

addElement addComponent The addElement method is
used to populate the view
manually and exists under the
systemcomposer.view.Elem
entGroup object.

removeElement removeComponent The removeElement method is
used to depopulate the view
manually and exists under the
systemcomposer.view.Elem
entGroup object.

createSubGroup createViewComponent The createSubGroup method
is used to add subgroups under
the main
systemcomposer.view.Elem
entGroup object.

Performance and Scalability Improvements
In R2021a, there are performance and scalability improvements for System Composer features.

• Model-building programmatic interfaces including connect, addPort, addComponent, and
addVariantComponent now perform operations faster.

• Queries that query for model elements with specific stereotypes and model elements that satisfy
constraints on stereotype property values now perform better. For examples, see Find Elements in
a Model Using Queries.

• Interface editor scalability enhancements include loading improvements and an improved user
experience on interface search, sort, expand, and collapse.

Interface Editor enhancements
In R2021a, the Interface Editor features three enhancements.

• Use multiple columns to track interface element properties. Column names include: Type,
Dimensions, Units, Complexity, Minimum, Maximum, and Description.

4-5

https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.arch.model.createview.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.arch.model.createviewarchitecture.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.view.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.addelement.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.viewarchitecture.addcomponent.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.addelement.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.removeelement.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.viewarchitecture.removecomponent.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.removeelement.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.createsubgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.viewarchitecture.createviewcomponent.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.createsubgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.view.elementgroup.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.arch.architecture.connect.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.arch.architecture.addport.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.arch.architecture.addcomponent.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ref/systemcomposer.arch.architecture.addvariantcomponent.html
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/creating-architectural-views-programmatically.html#mw_930d8497-4846-4d22-9746-e235fe78403f
https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/creating-architectural-views-programmatically.html#mw_930d8497-4846-4d22-9746-e235fe78403f

•
Show and hide columns by toggling the button.

• After creating interface elements, you can edit the properties in the columns from the Interface
Editor.

For more information, see Define Interfaces.

R2021a

4-6

https://www.mathworks.com/help/releases/R2021a/systemcomposer/ug/define-interfaces-1.html

R2020b

Version: 1.3

New Features

Bug Fixes

5

Model to Model Allocations: Establish traceable and directed
relationships between architectural elements in source and target
models
System Composer allocations allow you to establish a direct relationship from architectural elements
in one model such as components, ports, and connectors, to architectural elements in another model.
For more information, see Create and Manage Allocations.

You can use allocations to establish relationships from software components to hardware components
and to indicate the deployment strategy. You can allocate different instances of components, ports,
and connectors and use the allocation to perform various analyses such as resource-based allocation
analysis. For an example, see Allocate Architectures in a Tire Pressure Monitoring System.

An allocation set is a collection of allocation relationships between two models. The allocation set is
stored with the .mldatx file extension. You can create an allocation set in the Allocation Editor. Upon
the allocation set creation, a matrix appears where the source model elements are the rows and the
target model elements are the columns. You can open the allocation editor from the Allocation
Editor button in the toolstrip or by typing the editor command in the MATLAB Command Window.

Enhanced workflows with Architecture Views
In R2020b, workflows for authoring and generating multiple views are enhanced to simplify view
editing and filtering. There are six enhancements:

• You can start editing a view after selecting the view in the View Browser pane.
• You can add components from the composition tree in the Model Components pane by dragging

and dropping them from the composition tree.
• You can use the keyboard shortcut Delete to delete components from the view.
• You can use the Group button in the toolstrip to create a view component based on the selected

components.
• You can ungroup components by using the Ungroup button in the toolstrip.
• View filtering is now placed in a separate pane in which you can customize the query and apply it

to your view.

For more information, see Create Architecture Views Interactively.

R2020b

5-2

https://www.mathworks.com/help/releases/R2020b/systemcomposer/ug/allocations-overview-example.html
https://www.mathworks.com/help/releases/R2020b/systemcomposer/ug/allocate-architectures-of-the-tire-pressure-monitoring-system.html
https://www.mathworks.com/help/releases/R2020b/systemcomposer/ref/systemcomposer.allocation.systemcomposer.allocation.editor.html
https://www.mathworks.com/help/releases/R2020b/systemcomposer/ug/creating-architecture-model-views.html

Hierarchy Views: Display component hierarchy as a tree diagram
The Hierarchy View allows you to visualize component hierarchy together with component
stereotypes, stereotype properties, and the reference type a component instantiates. Hierarchy
diagrams show the same set of components visible in the component diagram view, and components
are selected and filtered in the same way. Any component diagram view can be optionally represented
as a hierarchy diagram. The Hierarchy View flattens the component diagram view and displays in a
tree form. You can see the Hierarchy View by selecting Hierarchy diagram in the Architecture
Views Editor.

The hierarchy diagrams show a single root, which is the view specification. The root corresponds to
the containing system box shown in the component view. The lines between components originate
from the parent component with the filled diamond symbols that are used in UML compositions and
end with a terminating dot at the child component.

For more information, see Display Component Hierarchy Using Hierarchy Views.

Referenced Data Dictionaries: Organize interfaces in a hierarchy of
data dictionaries
In R2020b, an interface data dictionary can reference other data dictionaries, creating a hierarchy in
which the dictionary aggregates interfaces defined in its referenced dictionaries. A System Composer
model linked to the root (top-level) dictionary of a hierarchy can access and use interfaces defined in
the root as well as any of the dictionaries it references directly or indirectly.

For more information, see Save, Link, and Delete Interfaces.

Interface Editor enhancements
In R2020b, there are three enhancements to the Interface Editor.

• The Interfaces pane is now placed at the bottom of the model window.

5-3

https://www.mathworks.com/help/releases/R2020b/systemcomposer/ug/use-hierarchy-views-to-display-component-hieracrhy-as-a-tree-diagram.html
https://www.mathworks.com/help/releases/R2020b/systemcomposer/ug/save-and-import-interfaces.html

• You can search the interface table on the first column.
• You can sort interfaces and specify the sorting criteria.

For more information, see Define Interfaces.

Support for component behavior using Simulink models with message
input and output
You can define component behavior by linking a Simulink behavior model with message input and
output. For more information about Simulink messages, see Simulink Messages Overview (Simulink).

Use the Sequence Viewer tool to visualize events that represent the flow of messages, functions
calls, and state transitions. To activate event logging, on the Simulation tab, in the Prepare section,
select Log Events. To visualize the logged events, go to the Review Results section and select the
Sequence Viewer.

R2020b

5-4

https://www.mathworks.com/help/releases/R2020b/systemcomposer/ug/define-interfaces-1.html
https://www.mathworks.com/help/releases/R2020b/simulink/ug/simulink-messages-overview.html
https://www.mathworks.com/help/releases/R2020b/systemcomposer/ref/sequenceviewertool.html

Stereotype-Based Styling: Style connectors based on stereotypes and
use custom icons for component stereotypes
In R2020b, there are two stereotype-based styling enhancements in the Profile Editor:

• You can style architecture connectors using the stereotype settings. You can style connectors by
using connector, port, or port interface stereotypes. Customize styling provides various color and
line style choices. Connector styles are also reflected in architecture and spotlight views.

• You can use custom icon images for component stereotypes. Custom icons support .png, .jpeg,
or .svg image files of size 16-by-16 pixels. The custom icons are displayed as badges on the
components for which the stereotypes are applied.

5-5

For more information, see Define Profiles and Stereotypes.

Support for protected models as component behaviors
In R2020b, you can link a component in your architecture model to a protected Simulink model to
create component behaviors. You can convert an already linked Simulink behavior model to a
protected model, and this change is reflected after refreshing the model.

For more information, see Implement Components in Simulink.

Import and export requirement links along with the architecture
models
In R2020b, you can:

• Export your architecture models with requirement links to your system requirements.

When you export your architecture model using the exportModel function, the output structure
has a requirementLinks field that contains all the link information present in the model.

• Import links to requirements and reconstruct them in your System Composer model using
importModel.

You can import requirement links to your model by using the new requirementLinks argument
in
systemcomposer.importModel(modelName,components,ports,connections,interface
s,requirementLinks).

For more information, see Import and Export Architecture Models.

R2020b

5-6

https://www.mathworks.com/help/releases/R2020b/systemcomposer/ug/customize-model-elements.html
https://www.mathworks.com/help/releases/R2020b/systemcomposer/ug/implement-components-in-simulink.html
https://www.mathworks.com/help/releases/R2020b/systemcomposer/ref/systemcomposer.systemcomposer.exportmodel.html
https://www.mathworks.com/help/releases/R2020b/systemcomposer/ref/systemcomposer.systemcomposer.importmodel.html
https://www.mathworks.com/help/releases/R2020b/systemcomposer/ug/import-and-export-architectures.html

R2020a

Version: 1.2

New Features

6

Stereotype-Based Styling: Associate a color with component
stereotypes
Profiles and stereotypes are used to apply custom metadata on the architecture model elements.
Element styling is an additional visual cue that indicates applied stereotypes. Use a preconfigured set
of color options for component stereotypes to style the architecture component headers.

Interface Stereotypes: Apply stereotypes for custom metadata on
interface objects
In R2020a, you can add stereotypes containing custom properties to port interfaces. Architecture
profiles can be imported into shared dictionaries to create and manage stereotyped interfaces that
are shared across multiple models, which enables collaborative workflows. Specify stereotypes that
apply to interfaces in the Profile Editor. You can view and edit stereotype properties in the Property
Inspector.

R2020a

6-2

Quick Insert Stereotypes: Insert stereotyped components directly by
typing on the canvas
You can now insert components preconfigured with all available component stereotypes in the
profiles applied to a model using the quick insert capability of the System Composer canvas, which is
enabled by typing into an empty location in the canvas.

6-3

Model Templates for Referenced Models: Select from preconfigured
templates when creating new referenced architecture or behavior
models
To maintain specialized settings when creating Simulink behaviors or new architecture models linked
to components, you can choose to use an existing template model from the palette of available
template models on the Simulink start page. Specialized settings can include configuration
parameters such as the solver type, diagnostic settings, and code generation settings. Use the
template to specify copyright annotations and organizational styles.

Requirements on Component Ports: Link requirements to component
ports
In R2020a, you can link requirements to ports in a System Composer model using the Requirements
Perspective. Create requirement sets, organize requirements into hierarchies, and link requirements
to components and ports using Simulink Requirements. Annotate architecture models with
requirement information and navigate to the source requirement.

R2020a

6-4

Partial Architecture Model Load: Improved loading for large models
System Composer now loads the architecture part of the model without completely loading the
underlying block diagrams of models that are linked to components. For example, opening an
architecture model with hundreds of reusable components and behaviors no longer loads every block
diagram in the model hierarchy. Models are fully loaded when System Composer workflows need
them or you choose to open them explicitly.

6-5

R2019b

Version: 1.1

New Features

Bug Fixes

7

Architecture Views
You can author and generate multiple views for specific viewpoints for design, analysis or
communication. Create a view by writing queries against the model using the System Composer
model query language. See Creating Architecture Views Interactively.

Interface Adapter
Visually specify an interface mapping between components with different but compatible interfaces.
For example, map a signal with different interface names. See Interface Adapter.

Import and Export Architecture Models
Import an architecture into System Composer using Microsoft® Excel® spreadsheets or MATLAB
tables. The tables define components, ports, and connections. See Importing and Exporting
Architecture Models.

AUTOSAR Software Architecture
AUTOSAR Composition Editor: Author compositions, simulate functional behavior with basic software
services using Composition Editor.

Support for architecture and composition modeling for the AUTOSAR Classic Platform. You can:

• Create AUTOSAR architecture models.
• Use AUTOSAR composition editor to add and connect Composition and Component blocks.
• Link AUTOSAR components to Simulink Requirements.
• Define AUTOSAR component behavior by creating or linking Simulink implementation models.
• Configure AUTOSAR scheduling and simulation, including AUTOSAR Basic Software services.
• Generate and package composition AUTOSAR XML description and component code.

R2019b

7-2

https://www.mathworks.com/help/releases/R2019b/systemcomposer/ug/creating-architecture-model-views.html
https://www.mathworks.com/help/releases/R2019b/systemcomposer/ug/interface-adapter.html
https://www.mathworks.com/help/releases/R2019b/systemcomposer/ug/import-and-export-architectures.html
https://www.mathworks.com/help/releases/R2019b/systemcomposer/ug/import-and-export-architectures.html

R2019a

Version: 1.0

New Features

8

Introducing System Composer
System Composer enables the definition, analysis, and specification of architectures and compositions
for model-based systems engineering and software design. With System Composer, you allocate
requirements while refining an architecture model that can then be designed and simulated in
Simulink. 

System Composer lets you create architecture models that describe a system in terms of components
and interfaces. You can also populate an architecture model from the architectural elements of
Simulink designs or C/C++ code. You can create custom live views of the model to study specific
design or analysis concerns. With these architecture models, you can analyze requirements, capture
properties via stereotyping, perform trade studies, and produce specifications and ICDs.

Composition Editor
Author and edit architecture models in the Composition Editor. Model physical and logical
architecture of a system. Create a visual representation of components, ports, and connections and
specify information exchange between components with interfaces. Decompose components to add
detail and define hierarchical relationships. Create reusable architectures.

Spotlight Views
You can create Spotlight views to analyze component dependencies and hierarchy. A Spotlight view is
a simplified view of a model that captures the upstream and downstream dependencies of a specific
component of interest. You can shift the spotlight to a different component from within the Spotlight
view. You can also trace an element from the Spotlight view back to the composition.

Linking Simulink Behavior Models
You can use Simulink models with System Composer to define component behavior by creating or
linking to a Simulink behavior model. Take advantage of System Composer architecture editing and
analysis capabilities for Simulink behavior models by exporting them as architecture models.

Linking and Managing Requirements
You can link components to requirements using the Requirements perspective. Create requirement
sets, organize requirements into hierarchies, and link requirements to components using Simulink
Requirements. Annotate architecture models with requirements information and navigate to the
source requirement.

Stereotypes and Profiles
You can create stereotypes as extensions of components, ports, and connections by defining
additional properties. Use Profile Editor to define profiles as self-consistent sets of stereotypes.
Import profiles into architecture models. Assign stereotypes to model elements.

R2019a

8-2

Architecture Model Analysis
You can use MATLAB analytics with System Composer programmatic interfaces to write scripts to
generate data that can be used for trade studies or for verifying nonfunctional requirements.

8-3

	R2022b
	Author parameters on components that flow down through Simulink and architectures
	Authoring asynchronous client-server interfaces in software architecture models
	Enable functions authoring in AUTOSAR Blockset architectures
	Interface compatibility edit-time checks
	Edit, view, and manage allocations on architecture models
	Use stereotypes on requirements and links
	Simulate Sequence Diagrams: Use sequence diagrams to visualize System Composer architecture simulation
	Describe elements of a sequence diagram using annotations
	Export view diagrams
	Edit layout of architecture views interactively
	Allow merging of message lines in architecture models
	Report Generator: Generate reports for a System Composer architecture model

	R2022a
	Instance-specific parameters for System Composer components
	Subsystem Reference Behaviors: Add reusable Simulink and Simscape behaviors to components
	Compare two versions of an architecture model using Comparison Tool
	Interface Adapter Bus Creation Mode: Use Adapter blocks to author interfaces for outgoing connections
	Synchronize sequence diagrams and architecture models
	Client-server interfaces: Model service-oriented architectures in software architecture models
	Author and edit functions in software architectures
	Combine multiple signal or message lines in software architectures into single line using the Adapter block
	Function Stereotypes: Apply stereotypes to functions of software architectures
	Software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulation support for reference components
	Import and export functions of software architectures
	Author Model Advisor checks that run at edit-time

	R2021b
	Physical Interfaces with Simscape: Create physical interfaces, ports, and connections on components
	Simulink Subsystem Component: Add Simulink and Simscape behaviors to components
	Create software architectures from existing components
	Functions Editor: Visualize component functions in software architectures
	Value Types as Interfaces: Describe atomic pieces of data
	Owned Interfaces: Define interfaces local to ports
	Architecture Views: Add port filters
	Architecture Hierarchy: Display the hierarchy of unique component types
	Class Diagrams: Display software architecture model as a class diagram
	Import and export software architectures
	Test harnesses for System Composer components

	R2021a
	Sequence Diagrams: Describe system behavior as a sequence of interactions between components
	State Charts: Describe component behavior using Stateflow charts to represent modes of operation
	Software Architecture: Simulate and deploy software functions from System Composer
	Updates to the Architecture Views Gallery and Programmatic Interfaces
	Performance and Scalability Improvements
	Interface Editor enhancements

	R2020b
	Model to Model Allocations: Establish traceable and directed relationships between architectural elements in source and target models
	Enhanced workflows with Architecture Views
	Hierarchy Views: Display component hierarchy as a tree diagram
	Referenced Data Dictionaries: Organize interfaces in a hierarchy of data dictionaries
	Interface Editor enhancements
	Support for component behavior using Simulink models with message input and output
	Stereotype-Based Styling: Style connectors based on stereotypes and use custom icons for component stereotypes
	Support for protected models as component behaviors
	Import and export requirement links along with the architecture models

	R2020a
	Stereotype-Based Styling: Associate a color with component stereotypes
	Interface Stereotypes: Apply stereotypes for custom metadata on interface objects
	Quick Insert Stereotypes: Insert stereotyped components directly by typing on the canvas
	Model Templates for Referenced Models: Select from preconfigured templates when creating new referenced architecture or behavior models
	Requirements on Component Ports: Link requirements to component ports
	Partial Architecture Model Load: Improved loading for large models

	R2019b
	Architecture Views
	Interface Adapter
	Import and Export Architecture Models
	AUTOSAR Software Architecture

	R2019a
	Introducing System Composer
	Composition Editor
	Spotlight Views
	Linking Simulink Behavior Models
	Linking and Managing Requirements
	Stereotypes and Profiles
	Architecture Model Analysis

